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(LH)

m enriched histogram representations
m separate LH for each document-part

m combine more LHs:
word /char usage (frequency) + sequential information

m more helpful than global histograms
m also challenging situations:

m imbalanced training sets
m small training sets
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Evolution

m word histograms
4
m n-grams at word level

4

m n-grams at character level
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Bag of words University of Bamberg
Representation (BOW)

m one document: histogram over vocabulary

m weighting: binary (or other)
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Locally-weighted bag-of-words University of Bamberg
Representation (LOWBOW)

m several local histograms per document
m terms of documents weighted:

m smoothed by kernel function K,,,, (x)
m term position weighting
m term frequency weighting

m over terms in vocabulary
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Locally-weighted bag-of-words University of Bamberg

Representation (LOWBOW)

LHs: position + frequency weighting
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Figure 1: Process for obtaining local histograms. [291]
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Approach
LOWBOW & BOLH

LOWBOW histogram
m unweighted sum of LHs

m term usage + sequential
information
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BOLH (Bag of local histograms)

m term occurrence frequencies
across different locations on
document
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SVM

m multiclass SVM

m associate patterns-outputs (results of LOWBOW / set of LHs)
to documents authors

LOWBOW BOLH
m linear kernel m no standard kernel
m Diffusion
m Eucidean
m 2
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Data-Set
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Plakias and Stamatatos, 2008a+b

subset of RCV1 collection

docs authored by 10 authors

same topic

50 docs per author for training and also 50 for testing
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Settings

3-grams

balanced corpus (BC)
balanced reduced data sets (RBC)
imbalanced reduced data sets (IRBC)
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Balanced Data

m LOWBOW histogram vs BOW

Method Parameters Words (haracters
BOW - 782 %  75.0%
LOWBOW k=2; 0=0.2 75.8%  72.0%
LOWBOW k =5; 0 =0.2 77.4%  75.2%

LOWBOW k —20, c=0.2 77.4% 75.0%

Figure 2: Accuracy for BOW and LOWBOW, with char/word
n-grams

m with char and word n-grams

m BOW very effective
m LOWBOW worse when &k = 2 LHs
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Balanced Data

m BOLH (superior to LOWBOW, BOW)

Kernel Euc. Di usion EMD X2
Words

Setting-1  78.6%  81.0% 75.0%  75.4%

Setting-2  77.6% 82.0% 76.8% T7.2%

Setting-3  79.2%  80.8% 77.0%  79.0%
(haracters

Setting-1  83.4% 82.8% 84.4% 83.8%

Setting-2  83.4%  84.2% 82.2% 84.6%

Setting-3  83.6%  86.4% 81.0% 85.2%

Figure 3: Accuracy for BOLH, with char/word n-grams

m setting 1, 2, 3 correspond to k = 2,5,20
m diffusion kernel outperforms best results
m characters better than words
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RBC - Reduced

m more realistic setting
m BOW, LOWBOW histogram, BOLH (diffusion kernel, k = 20)
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Results
Balanced Data

WORDS

Data set Balanced
Setting 1-doc 3-docs  5-docs  10-docs  50-docs
BOW 36.8% 57.1% 62.4% 69.9% 78.2%
LOWBOW 37.9% 55.6% 60.5% 69.3% 77.4%
Di usion kernel  52.4% 63.3% 69.2% 72.8% 82.0%
Reference - - 53.4% 67.8%  80.8%

CHARACTER N-GRAMS ‘
Data set Balanced
Setting 1-doc 3-docs  5-docs  10-docs  50-docs
BOW 65.3% 71.9% T42% 76.2% 75.0%
LOWBOW 61.9% 71.6% 74.5% 73.8% 75.0%
Di usion kernel  70.7% 78.3% 80.6% 82.2%  86.4%
Reference - - 50.4% 67.8% = 76.6%

Figure 4: Accuracy for RBC, with char/word n-grams
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RBC - Reduced

m best performance: BOLH (diffusion kernel)
m LHs more beneficial with less documents

m character-level significantly better than word-level
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Imbalanced Data

WORDS \

Data set Balanced Imbalanced

Setting 1-doc 3-docs  5-docs  10-docs  50-docs| 2-10 5-10 10-20

BOW 36.8% 57.1% 62.4% 69.9% 78.2% | 62.3% 67.2% 71.2%
LOWBOW 37.9% 55.6% 60.5% 69.3% 77.4% 61.1% 67.4% T71.5%
Di usion kernel  52.4% 63.3% 69.2% 72.8% 82.0% 66.6% 70.7% 74.1%
Reference - - 53.4% 67.8%  80.8% 49.2% 59.8% 63.0%

CHARACTER N-GRAMS

Data set Balanced Imbalanced

Setting 1-doc 3-docs  5-docs  10-docs  50-docs| 2-10 5-10 10-20

BOW 65.3% 71.9% T42% 76.2% 75.0% 701% 73.4% 73.1%
LOWBOW 61.9% 71.6% 74.5% 73.8% 75.0% 70.8% 72.8% 72.1%
Di usion kernel  70.7% 78.3% 80.6% 82.2% 86.4% 77.8% 80.5% 82.2%
Reference - - 50.4% 67.8%  76.6% | 49.2% 59.8%  63.0%

Figure 5: Accuracy for RBC and IRBC, with char/word n-grams
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IRBC - Imbalanced

= BOW + LOWBOW OK
m BOLH performed best

m BOLH robust to reduction and imbalanced data
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m local histograms are advantageous

m paper-conclusion:
LHs can uncover writing preferences of author

m improvements larger in reduced 4 imbalanced data sets
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Implementation

//TODO implement me.
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Questions?

Michael Trager

michael.traeger@stud.uni-bamberg.de
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